
Introduction and Objectives BSTs Regular Trees Heaps

Binary Trees and Heaps

CS 491 – Competitive Programming

Dr. Mattox Beckman

University of Illinois at Urbana-Champaign

Department of Computer Science

Spring 2023

Introduction and Objectives BSTs Regular Trees Heaps

Objectives

I Write code to implement binary search trees, regular trees, and

heaps.

I Explain the differences between these data structures.

Introduction and Objectives BSTs Regular Trees Heaps

Binary Search Trees

A Binary Search Tree is a set of vertices vi such that:

I There is precisely one vertex with no parents, called the root.

I Each vertex has 0,1, or 2 children.

I Each vertex has a value of a type that supports ordering

I If a child value is less than the parent, it must be the left child.

I If a child value is greater than the parent, it must be the right child.

I If the values are equal: go left, go right, or delete. Just be

consistent.

Important notes:

I Expected height of the tree isO(log2 n).

I Worst case height isO(n). When does this occur?

Introduction and Objectives BSTs Regular Trees Heaps

Picture

4

2

1 3

6

5 7

Introduction and Objectives BSTs Regular Trees Heaps

Implementing

I Use a struct for simplicity

1 struct bst<T> {
2 T value;
3 bst<T> *left, *right;
4

5 bst<T>(T value) {
6 this->value = value;
7 left = right = NULL;
8 }
9 }

I You could also be clever and use a sized-2 vector for the children, or

a pair.

Introduction and Objectives BSTs Regular Trees Heaps

Add

1 bst<T> add(bst<T> *root, T value) {
2 if (root == NULL) {
3 return bst<T>(value);
4 }
5 bst<T> *parent = root;
6 while (true) {
7 if (value < root->value) {
8 if (parent->left == NULL) {
9 return parent->left = bst<T>(value);

10 } else {
11 parent = parent->left;
12 }
13 } else {
14 // Same thing, but go right.
15 }}}

Introduction and Objectives BSTs Regular Trees Heaps

Find

1 bool find(bst<T> *root, T value) {
2 while (root) {
3 if (root->value == value) {
4 return true;
5 }
6 if (value < root->value)
7 root = root->left;
8 else
9 root = root->right;

10 }
11 return false;
12 }

Introduction and Objectives BSTs Regular Trees Heaps

Deletion

Deletion is a bit of a pain. The steps:

I Find the victim node

I Get the In Order Predecessor (IOP) of the victim node.

I Replace the victim value with the IOP value.

I Delete the IOP from the child branch.

There are edge cases!

I Deleting the last vertex

I Nodes without an IOP

Introduction and Objectives BSTs Regular Trees Heaps

Picture: Deleting 4

4

2

1 3

6

5 7

3

2

1

6

5 7

Introduction and Objectives BSTs Regular Trees Heaps

Regular Trees

If we don’t constrain order or number of children, we just have a tree.

Trees have special properties!

I |E| = |V| − 1. Adding even one more edge makes it not a tree

anymore.

I There are no cycles.

I Equivalently: there is exactly one path between any two nodes.

Representation:

I Usually we would use the adjacency list representation from last

time to construct the tree.

Introduction and Objectives BSTs Regular Trees Heaps

Remember Heaps?

I A heap is also a binary tree.

I Each child is smaller (max-heap) or larger (min-heap) than the

parent.

I We use vectors to represent them.

I Leave the 0 element empty as a sentinel. The math is cleaner this

way.

I You rarely need to use heaps as heaps, but this method of storing a

binary tree is often very efficient!

Introduction and Objectives BSTs Regular Trees Heaps

Heap Visualization

8

6

5 3

7

0 4

S

0

8

1

6

2

7

3

5

4

3

5

0

6

4

7

Introduction and Objectives BSTs Regular Trees Heaps

Implementing

1 int goLeft(int i) {
2 return 2*i;
3 }
4

5 int goRight(int i) {
6 return 2*i + 1;
7 }
8

9 int goUp(int i) {
10 if (i>1) {
11 return i / 2;
12 }
13 }

	Introduction and Objectives
	BSTs
	Regular Trees
	Heaps

